slides

Cooling the Origins Space Telescope

Abstract

The NASA Astrophysics Division has commissioned 4 studies for consideration by the 2020 Decadal Survey to be the next flagship mission following WFIRST (Wide Field Infrared Survey Telescope). One of the four studies is the Origins Space Telescope (OST), which will cover wavelengths from 6 microns to 600 microns. To perform at the level of the zodiacal, galactic, and cosmic background, the telescope must be cooled to 4 degrees Kelvin. 4 degrees Kelvin multi-stage mechanical cryocoolers will be employed along with a multilayer sunshield/thermal shield to achieve this temperature with a manageable parasitic heat load. Current state-of-the-art cryocoolers can achieve close to 4 degrees Kelvin, providing about 50 megawatts of cooling at 4 degrees Kelvin with an input power of 500 watts. Multiple coolers at this power level will be used in parallel. These coolers also provide extra cooling power at intermediate temperature stages of 15-20 degrees Kelvin and 50-70 degrees Kelvin . This upper stage cooling will be used to limit the heat conducted to 4 degrees Kelvin . The multi-layer sunshield will limit the radiated thermal energy to the 4 degrees Kelvin volume. This paper will describe the architecture of the cryogenic system for OST along with preliminary thermal models

    Similar works