research

Model-based event-triggered robust MPC/ISM

Abstract

A model-based event-triggered control scheme based on the combined use of Model Predictive Control (MPC) and Integral Sliding Mode (ISM) control is proposed in this paper. The aim is to reduce to a minimum the number of transmissions of the plant state over the network, in order to alleviate delays and packet loss induced by the network overload, while guaranteeing robust stability and constraints fulfillment. The presented control scheme includes a model-based controller and a smart sensor, both containing a copy of the nominal model of the plant. The sensor intelligence is provided by a triggering condition, which enables to determine when it is necessary to transmit the measured state and to update the nominal model. The controller includes an ISM component, which has the role of compensating the uncertainties, and a MPC term which optimizes the system evolution. The control system performance are assessed in simulation relying on an illustrative mechanical example

    Similar works