research

Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-TcT_c superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8 + δ}

Abstract

We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna (MSA) exhibiting C3vC_{3v} point group symmetry. When the C3vC_{3v} operations are imposed upon the antenna, the TM(m,nm,n) modes with wave vectors αm2+nm+n2\alpha \sqrt[ ]{m^2 + nm + n^2} are much less dense than commonly thought. The R3R_3 operations restrict the integral nn and mm to satisfy mn\mid m - n \mid = 3pp, where pp \geq 0 and pp \geq 1 for the modes even and odd under reflections about the three mirror planes, respectively. We calculate the forms of representative wave functions and the angular dependence of the output power when these modes are excited by the uniform and non-uniform ac Josephson current sources in thin, ideally equilateral triangular MSAs employing the intrinsic Josephson junctions in the high transition temperature TcT_c superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8 + \delta}, and fit the emissions data from an earlier sample for which the C3vC_{3v} symmetry was apparently broken.UCF RAMP program, JSPS Research Fellowship for young scientists, CREST-JST (Japan Science and Technology Agency), WPI (World Premier International Research Center Initiative)- MANA (Materials Nanoarchitectonics) project (NIMS

    Similar works