Necessary conditions for tiling finitely generated amenable groups

Abstract

We consider a set of necessary conditions which are efficient heuristics for deciding when a set of Wang tiles cannot tile a group. Piantadosi gave a necessary and sufficient condition for the existence of a valid tiling of any free group. This condition is actually necessary for the existence of a valid tiling for an arbitrary finitely generated group.We then consider two other conditions: the first, also given by Piantadosi, is a necessary and sufficient condition to decide if a set of Wang tiles gives a strongly periodic tiling of the free group; the second, given by Chazottes et. al,, is a necessary condition to decide if a set of Wang tiles gives a tiling of Z2\mathbb Z^2.We show that these last two conditions are equivalent. Joining and generalising approaches from both sides, we prove that they are necessary for having a valid tiling of any finitely generated amenable group, confirming a remark of Jeandel

    Similar works