research

Theoretical study of the electronic states of hollandite vanadate K 2V8O16

Abstract

Electronic states of hollandite vanadate K2V8O 16, a one-dimensional zigzag-chain system of t2g orbitals in a mixed valent state, are considered. We calculate the Madelung energies to determine the most stable charge-ordering pattern that is consistent with the observed superlattice structure. We then develop the strong-coupling perturbation theory to derive the effective spin-orbit Hamiltonian, starting from the triply-degenerate t2g orbitals in the VO6 octahedral structure. An exact-diagonalization technique is used on small clusters of this Hamiltonian to determine the orbital-ordering pattern and spin structures in the ground state. We thereby discuss the electronic and magnetic properties of K2 V8O16. © 2009 IOP Publishing Ltd.Ministry of Education, Culture, Sports, Science and Technology of Japan/18028008Ministry of Education, Culture, Sports, Science and Technology of Japan/18043006Ministry of Education, Culture, Sports, Science and Technology of Japan/185400338Ministry of Education, Culture, Sports, Science and Technology of Japan/19014004JSPS Research Fellowship for Young Scientist

    Similar works