Metal–organic framework (MOF)‐derived carbon materials exhibit large surface areas, but dominant micropore characteristics and uncontrollable dimensions. Herein, we propose a self‐sacrificial template‐directed synthesis method to engineer the porous structure and dimensions of MOF‐derived carbon materials. A porous zinc oxide (ZnO) nanosheet solid is selected as the self‐sacrificial template and two‐dimensional (2D) nanostructure‐directing agent to prepare 2D ZIF‐8‐derived carbon nanosheets (ZCNs). The as‐prepared ZCN materials exhibit a large surface area with hierarchical porosity. These intriguing features render ZCN materials advanced electrode materials for electrochemical energy‐storage devices, demonstrating large ion‐accessible surface area and high ion‐/electron‐transport rates. This self‐sacrificial template‐directed synthesis method offers new avenues for rational engineering of the porous structure and dimensions of MOF‐derived porous carbon materials, thus exploiting their full potential for electrochemical energy‐storage devices.On the surface: A self‐sacrificial template‐directed synthesis method is proposed to engineer the porosity and dimensions of MOF‐derived carbon materials. By using a porous nanosheet solid as the self‐sacrificial template and two‐dimensional (2D) nanostructure‐directing agent, 2D ZIF‐8‐derived carbon nanosheets are prepared, which exhibit a large ion‐accessible surface area and rapid ion transport as the electrode materials for electrochemical energy‐storage devices.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137193/1/celc201500536-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137193/2/celc201500536.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137193/3/celc201500536_am.pd