research

Two Results on Slime Mold Computations

Abstract

We present two results on slime mold computations. In wet-lab experiments (Nature'00) by Nakagaki et al. the slime mold Physarum polycephalum demonstrated its ability to solve shortest path problems. Biologists proposed a mathematical model, a system of differential equations, for the slime's adaption process (J. Theoretical Biology'07). It was shown that the process convergences to the shortest path (J. Theoretical Biology'12) for all graphs. We show that the dynamics actually converges for a much wider class of problems, namely undirected linear programs with a non-negative cost vector. Combinatorial optimization researchers took the dynamics describing slime behavior as an inspiration for an optimization method and showed that its discretization can ε\varepsilon-approximately solve linear programs with positive cost vector (ITCS'16). Their analysis requires a feasible starting point, a step size depending linearly on ε\varepsilon, and a number of steps with quartic dependence on opt/(εΦ)\mathrm{opt}/(\varepsilon\Phi), where Φ\Phi is the difference between the smallest cost of a non-optimal basic feasible solution and the optimal cost (opt\mathrm{opt}). We give a refined analysis showing that the dynamics initialized with any strongly dominating point converges to the set of optimal solutions. Moreover, we strengthen the convergence rate bounds and prove that the step size is independent of ε\varepsilon, and the number of steps depends logarithmically on 1/ε1/\varepsilon and quadratically on opt/Φ\mathrm{opt}/\Phi

    Similar works