Planar ferromagnetic channels have been shown to theoretically support a
long-range ordered and coherently precessing state where the balance between
local spin injection at one edge and damping along the channel establishes a
dissipative exchange flow, sometimes referred to as a spin superfluid. However,
realistic materials exhibit in-plane anisotropy, which breaks the axial
symmetry assumed in current theoretical models. Here, we study dissipative
exchange flows in a ferromagnet with in-plane anisotropy from a dispersive
hydrodynamic perspective. Through the analysis of a boundary value problem for
a damped sine-Gordon equation, dissipative exchange flows in a ferromagnetic
channel can be excited above a spin current threshold that depends on material
parameters and the length of the channel. Symmetry-broken dissipative exchange
flows display harmonic overtones that redshift the fundamental precessional
frequency and lead to a reduced spin pumping efficiency when compared to their
symmetric counterpart. Micromagnetic simulations are used to verify that the
analytical results are qualitatively accurate, even in the presence of nonlocal
dipole fields. Simulations also confirm that dissipative exchange flows can be
driven by spin transfer torque in a finite-sized region. These results
delineate the important material parameters that must be optimized for the
excitation of dissipative exchange flows in realistic systems.Comment: 20 pages, 5 figure