Effect of Cherenkov radiation on localized states interaction

Abstract

We study theoretically the interaction of temporal localized states in all fiber cavities and microresonator-based optical frequency comb generators. We show that Cherenkov radiation emitted in the presence of third order dispersion breaks the symmetry of the localized structures interaction and greatly enlarges their interaction range thus facilitating the experimental observation of the dissipative soliton bound states. Analytical derivation of the reduced equations governing slow time evolution of the positions of two interacting localized states in a generalized Lugiato-Lefever model with the third order dispersion term is performed. Numerical solutions of the model equation are in close agreement with analytical predictions

    Similar works