There has been a long standing interest in understanding `Social Influence'
both in Social Sciences and in Computational Linguistics. In this paper, we
present a novel approach to study and measure interpersonal influence in daily
interactions. Motivated by the basic principles of influence, we attempt to
identify indicative linguistic features of the posts in an online knitting
community. We present the scheme used to operationalize and label the posts
with indicator features. Experiments with the identified features show an
improvement in the classification accuracy of influence by 3.15%. Our results
illustrate the important correlation between the characteristics of the
language and its potential to influence others.Comment: 10 pages, Accepted in NLP+CSS workshop for ACL (Association for
Computational Linguistics) 201