Gradient coding is a technique for straggler mitigation in distributed
learning. In this paper we design novel gradient codes using tools from
classical coding theory, namely, cyclic MDS codes, which compare favorably with
existing solutions, both in the applicable range of parameters and in the
complexity of the involved algorithms. Second, we introduce an approximate
variant of the gradient coding problem, in which we settle for approximate
gradient computation instead of the exact one. This approach enables graceful
degradation, i.e., the ℓ2 error of the approximate gradient is a
decreasing function of the number of stragglers. Our main result is that
normalized adjacency matrices of expander graphs yield excellent approximate
gradient codes, which enable significantly less computation compared to exact
gradient coding, and guarantee faster convergence than trivial solutions under
standard assumptions. We experimentally test our approach on Amazon EC2, and
show that the generalization error of approximate gradient coding is very close
to the full gradient while requiring significantly less computation from the
workers