A conjecture of Batyrev and Manin predicts the asymptotic behaviour of
rational points of bounded height on smooth projective varieties over number
fields. We prove some new cases of this conjecture for conic bundle surfaces
equipped with some non-anticanonical height functions. As a special case, we
verify these conjectures for the first time for some smooth cubic surfaces for
height functions associated to certain ample line bundles.Comment: 16 pages; minor corrections; Proceedings of the American Mathematical
Society, 147 (2019), no. 8, 3209-322