research

About the step-flow mechanism at the origin of graphene crystallisation at the surface of catalysts

Abstract

The nucleation and growth of multiwall carbon nanotubes (MWCNTs) at the surface of crystalline iron-based catalysts are studied by in situ annealing and high-resolution transmission electron microscopy. Graphene planes, parallel to the catalyst surface, appear by a mechanism of step flow, where the atomic layers of catalyst are "replaced" by graphene layers. More interestingly, as the catalyst particles have curved or poly-faceted surfaces, those catalyst atomic layers correspond to no definite atomic plane. The step height may thus vary along a given step flow process. Step bunching due to impeded step migration, in certain growth conditions, yields characteristic catalyst nail-head shapes. Mastering this mechanism opens up the way to tailor the structure of MWCNTs, e.g. with highly parallel carbon walls

    Similar works

    Full text

    thumbnail-image

    Available Versions