research

Laboratory estimation of black carbon emissions from cookstoves

Abstract

Recent estimations show that residential solid fuel combustion accounts for 25% of global black carbon (BC) emissions (Lamarque et al., 2010). Thus, the control of these emissions through the implementation of cleaner cooking technologies could be crucial for climate change mitigation (Venkataraman et al., 2005). However, BC emission factors for biofuel cooking stoves have been poorly estimated due to the wide distribution and remote location of the stoves and the relatively complex existing assessment methods. This work presents results on BC emission factors (EF) estimation from combustion of biomass cooking systems in Western Africa (in Senegal). Three stones fire (traditional stove), Noflaye Jegg (rocket stove), Jambaar bois (ceramic improved stove) and a gasifier were analysed under laboratory conditions at the Centre de Recherche sur les Energies Renouvelables (CERER) in Dakar. Two types of fuels (wood species) were tested: Casuarina Equisetifolia (Filao) and Cordyla Pinnata (Dimb). Three replicates of the standardized Water Boiling Test with two phases (cold start and simmer) were conducted at the laboratory to test each cooking system. PM2.5 emissions were collected on quartz fibre filters, and BC content was subsequently analysed using three analytical methods: i) Nexleaf system, in which a photograph of the filter is compared with a calibrated reference scale; ii) the EEL43 Smoke Stain Reflectometer; and iii) the Sunset Laboratory OCEC Analyzer. The two first were compared with the third one, considered the internal reference

    Similar works