Mechanical adaptation of monocytes in model lung capillary networks

Abstract

International audienceProper circulation of white blood cells (WBCs) in the pulmonary vascular bed is crucial for an effective immune response. In this branched vascular network, WBCs have to strongly deform to pass through the narrowest capillaries and bifurcations. Although it is known that this process depends on the cell mechanical properties, it is still poorly understood due to the lack of a comprehensive model of cell mechanics and of physiologically relevant experiments. Here, using an in-house microfluidic device mimicking the pulmonary capillary bed we show that the dynamics of THP1 monocytes evolves along successive capillary-like channels, from a non-stationary slow motion with hops to a fast and smooth efficient one. We used actin cytoskeleton drugs to modify the traffic dynamics. This led us to propose a simple mechanical model that shows that a very-finely tuned cortical tension combined with a high cell viscosity govern the fast transit through the network while preserving cell integrity. We finally highlight that the cortical tension controls the steady-state cell velocity via the viscous friction between the cell and the channel walls

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 07/06/2020
    Last time updated on 11/09/2020