research

Bifurcation From Infinity For Reaction–Diffusion Equations Under Nonlinear Boundary Conditions

Abstract

We consider reaction–diffusion equations under nonlinear boundary conditions where the nonlinearities are asymptotically linear at infinity and depend on a parameter. We prove that, as the parameter crosses some critical values, a resonance-type phenomenon provides solutions that bifurcate from infinity. We characterize the bifurcated branches when they are sub- or supercritical. We obtain both Landesman–Lazer-type conditions that guarantee the existence of solutions in the resonant case and an anti-maximum principle

    Similar works