thesis

Characterization of Coupled Gold Nanoparticles in a Sparsely Populated Square Lattice

Abstract

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted polymer substrate with a regular square lattice and characterized the optical response of sparsely deposited nanoparticles by continuous dewetting which permit a diffractive lattice coupling

    Similar works