We study the effect of band anisotropy with discrete rotational symmetry
CN (where N≥2) in the quantum Hall regime of two-dimensional electron
systems. We focus on the composite Fermi liquid (CFL) at half filling of the
lowest Landau level. We find that the magnitude of anisotropy transferred to
the composite fermions decreases very rapidly with N. We demonstrate this by
performing density matrix normalization group calculations on the CFL, and
comparing the anisotropy of the composite fermion Fermi contour with that of
the (non-interacting) electron Fermi contour at zero magnetic field. We also
show that the effective interaction between the electrons after projecting into
a single Landau level is much less anisotropic than the band, a fact which does
not depend on filling and thus has implications for other quantum Hall states
as well. Our results confirm experimental observations on anisotropic bands
with warped Fermi contours, where the only detectable effect on the composite
Fermi contour is an elliptical distortion (N=2).Comment: 6 pages + bibliography, 5 figure