research

Close packed structure with finite range interaction: computational mechanics of layer pair interaction

Abstract

The stacking problem is approached by computational mechanics, using an Ising next nearest neighbor model. Computational mechanics allows to treat the stacking arrangement as an information processing system in the light of a symbol generating process. A general method for solving the stochastic matrix of the random Gibbs field is presented, and then applied to the problem at hand. The corresponding phase diagram is then discussed in terms of the underlying ϵ\epsilon-machine, or optimal finite state machine, describing statistically the system. The occurrence of higher order polytypes at the borders of the phase diagram is also analyzed. Discussion of the applicability of the model to real system such as ZnS and Cobalt is done. The method derived is directly generalizable to any one dimensional model with finite range interaction

    Similar works

    Full text

    thumbnail-image

    Available Versions