research

A characterization of Hermitian varieties as codewords

Abstract

It is known that the Hermitian varieties are codewords in the code defined by the points and hyperplanes of the projective spaces PG(r,q2)PG(r,q^2). In finite geometry, also quasi-Hermitian varieties are defined. These are sets of points of PG(r,q2)PG(r,q^2) of the same size as a non-singular Hermitian variety of PG(r,q2)PG(r,q^2), having the same intersection sizes with the hyperplanes of PG(r,q2)PG(r,q^2). In the planar case, this reduces to the definition of a unital. A famous result of Blokhuis, Brouwer, and Wilbrink states that every unital in the code of the points and lines of PG(2,q2)PG(2,q^2) is a Hermitian curve. We prove a similar result for the quasi-Hermitian varieties in PG(3,q2)PG(3,q^2), q=phq=p^{h}, as well as in PG(r,q2)PG(r,q^2), q=pq=p prime, or q=p2q=p^2, pp prime, and r4r\geq 4

    Similar works