'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Both researchers and industry players are facing the same obstacles when entering the big data field. Deploying and testing distributed data technologies requires a big up-front investment of both time and knowledge. Existing cloud automation solutions are not well suited for managing complex distributed data solutions. This paper proposes a distributed service orchestration architecture to better handle the complex orchestration logic needed in these cases. A novel service-engine based approach is proposed to cope with the versatility of the individual components. A hybrid integration approach bridges the gap between cloud modeling languages, automation artifacts, image-based schedulers and PaaS solutions. This approach is integrated in the distributed data experimentation platform Tengu, making it more flexible and robust