research

A socio-cognitive and computational model for decision making and user modelling in social phishing

Abstract

Systems software quality, and system security in particular, is often compromised by phishing attacks. The latter were relatively easy to detect through phishing content filters, in the past. However, it has been increasingly difficult to stop more recent and sophisticated social phishing attacks. To protect the citizens from new types of phishing attacks, software quality engineers need to provide equally sophisticating preventive technology that models people’s reactions. The authors considered the behaviour of people on the Internet from a socio-cognitive perspective and deduced who could be more prone to be spoofed by social phishing techniques. The authors herein propose a computational and interdisciplinary metamodelling methodology, which can assist in capturing and understanding people’s interactive behaviour when they are online. Online behaviour can reveal Internet users’ knowledge, information, and beliefs in a given social context; these could also constitute significant factors for trust in social phishing circumstances which, in turn, can provide valuable insights and decision making meta-knowledge for recognition of potential victims of phishers. The proposed modelling approach is illustrated and explained using real-life phishing cases. This meta-model can i) help social computing and phishing researchers to understand users’ trust decisions from a socio-cognitive perspective, and ii) open ways to integrate artificial intelligence design techniques within software quality management practices in order to protect citizens from being spoofed by social phishing attacks. Thus, this software design quality approach will increase system security as a proactive maintenance strategy

    Similar works