Circularly polarised colour of the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure

Abstract

This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this record.Helicoidal architectures comprising various polysaccharides such as chitin and cellulose have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterise the circularly polarised reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarised light is attributed to a Bouligand-type helicoidal morphology within the beetle’s exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle’s reflected colour, and therefore potentially enhances crypsis amongst the dense foliage of its rainforest habitat.This work was financially supported by the National Centre of Competence in Research BioInspired Materials and the Ambizione program of the Swiss National Science Foundation SNSF (PZ00P2 168223, to BDW)

    Similar works