research

Topological localization in out-of-equilibrium dissipative systems

Abstract

In this paper we report that notions of topological protection can be applied to stationary configurations that are driven far from equilibrium by active, dissipative processes. We show this for physically two disparate cases : stochastic networks governed by microscopic single particle dynamics as well as collections of driven, interacting particles described by coarse-grained hydrodynamic theory. In both cases, the presence of dissipative couplings to the environment that break time reversal symmetry are crucial to ensuring topologically protection. These examples constitute proof of principle that notions of topological protection, established in the context of electronic and mechanical systems, do indeed extend generically to processes that operate out of equilibrium. Such topologically robust boundary modes have implications for both biological and synthetic systems.Comment: 11 pages, 4 figures (SI: 8 pages 3 figures

    Similar works