research

Hyperbolicity of the time-like extremal surfaces in minkowski spaces

Abstract

In this paper, it is established, in the case of graphs, that time-like extremal surfaces of dimension 1+n1+n in the Minkowski space of dimension 1+n+m1+n+m can be described by a symmetric hyperbolic system of PDEs with the very simple structure (reminiscent of the inviscid Burgers equation)∂_tW+∑_j=1nA_j(W)∂_x_jW=0,      W:  (t,x)∈R1+n→W(t,x)∈Rn+m+(m+nn), \partial\_t W + \sum\_{j=1}^n A\_j(W)\partial\_{x\_j} W =0,\;\;\;W:\;(t,x)\in\mathbb{R}^{1+n}\rightarrow W(t,x)\in\mathbb{R}^{n+m+\binom{m+n}{n}},where each A_j(W)A\_j(W) is just a (n+m+(m+nn))×(n+m+(m+nn))\big(n+m+\binom{m+n}{n}\big)\times\big(n+m+\binom{m+n}{n}\big) symmetric matrix dependinglinearly on WW

    Similar works