We study a three-dimensional system of self-propelled Brownian particles
interacting via the Lennard-Jones potential. Using Brownian Dynamics
simulations in an elongated simulation box, we investigate the steady states of
vapour-liquid phase coexistence of active Lennard-Jones particles with planar
interfaces. We measure the normal and tangential components of the pressure
tensor along the direction perpendicular to the interface and verify mechanical
equilibrium of the two coexisting phases. In addition, we determine the
non-equilibrium interfacial tension by integrating the difference of the normal
and tangential component of the pressure tensor, and show that the surface
tension as a function of strength of particle attractions is well-fitted by
simple power laws. Finally, we measure the interfacial stiffness using
capillary wave theory and the equipartition theorem, and find a simple linear
relation between surface tension and interfacial stiffness with a
proportionality constant characterized by an effective temperature.Comment: 12 pages, 5 figures (Corrected typos and References