Precise control of tensile stress and intrinsic damping is crucial for the
optimal design of nanomechanical systems for sensor applications and quantum
optomechanics in particular. In this letter we study the in uence of oxygen
plasma on the tensile stress and intrinsic damping of nanomechanical silicon
nitride resonators. Oxygen plasma treatments are common steps in micro and
nanofabrication. We show that oxygen plasma of only a few minutes oxidizes the
silicon nitride surface, creating several nanometer thick silicon dioxide
layers with a compressive stress of 1.30(16)GPa. Such oxide layers can cause a
reduction of the e ective tensile stress of a 50 nm thick stoichiometric
silicon nitride membrane by almost 50%. Additionally, intrinsic damping
linearly increases with the silicon dioxide lm thickness. An oxide layer of
1.5nm grown in just 10s in a 50W oxygen plasma almost doubled the intrinsic
damping. The oxide surface layer can be e ciently removed in bu ered HF