research

On powers of operators with spectrum in cantor sets and spectral synthesis

Abstract

For ξ(0,12)\xi \in \big( 0, \frac{1}{2} \big), let EξE_{\xi} be the perfect symmetric set associated with ξ\xi, that is Eξ={exp(2iπ(1ξ)n=1+ϵnξn1):ϵn=0 or 1(n1)}E_{\xi} = \Big\{ \exp \Big( 2i \pi (1-\xi) \sum_{n = 1}^{+\infty} \epsilon_{n} \xi^{n-1} \Big) : \, \epsilon_{n} = 0 \textrm{ or } 1 \quad (n \geq 1) \Big\} and b(ξ)=log1ξlog22log1ξlog2.b(\xi) = \frac{\log{\frac{1}{\xi}} - \log{2}}{2\log{\frac{1}{\xi}} - \log{2}}. Let q3q\geq 3 be an integer and ss be a nonnegative real number. We show that any invertible operator TT on a Banach space with spectrum contained in E1/qE_{1/q} that satisfies \begin{eqnarray*} & & \big\| T^{n} \big\| = O \big( n^{s} \big), \,n \rightarrow +\infty \\ & \textrm{and} & \big\| T^{-n} \big\| = O \big( e^{n^{\beta}} \big), \, n \rightarrow +\infty \textrm{ for some } \beta < b(1/q),\end{eqnarray*} also satisfies the stronger property Tn=O(ns),n+.\big\| T^{-n} \big\| = O \big( n^{s} \big), \, n \rightarrow +\infty. We also show that this result is false for EξE_\xi when 1/ξ1/\xi is not a Pisot number and that the constant b(1/q)b(1/q) is sharp. As a consequence we prove that, if ω\omega is a submulticative weight such that ω(n)=(1+n)s,(n0)\omega(n)=(1+n)^s, \, (n \geq 0) and C1(1+n)sω(n)Cenβ,(n0)C^{-1} (1+|n|)^s \leq \omega(-n) \leq C e^{n^{\beta}},\, (n\geq 0), for some constants C>0C>0 and β<b(1/q),\beta < b( 1/q), then E1/qE_{1/q} satisfies spectral synthesis in the Beurling algebra of all continuous functions ff on the unit circle T\mathbb{T} such that n=+f^(n)ω(n)<+\sum_{n = -\infty}^{+\infty} | \widehat{f}(n) | \omega (n) < +\infty

    Similar works

    Full text

    thumbnail-image