research

On powers of operators with spectrum in cantor sets and spectral synthesis

Abstract

For Ī¾āˆˆ(0,12)\xi \in \big( 0, \frac{1}{2} \big), let EĪ¾E_{\xi} be the perfect symmetric set associated with Ī¾\xi, that is EĪ¾={expā”(2iĻ€(1āˆ’Ī¾)āˆ‘n=1+āˆžĻµnĪ¾nāˆ’1):ā€‰Ļµn=0Ā orĀ 1(nā‰„1)}E_{\xi} = \Big\{ \exp \Big( 2i \pi (1-\xi) \sum_{n = 1}^{+\infty} \epsilon_{n} \xi^{n-1} \Big) : \, \epsilon_{n} = 0 \textrm{ or } 1 \quad (n \geq 1) \Big\} and b(Ī¾)=logā”1Ī¾āˆ’logā”22logā”1Ī¾āˆ’logā”2.b(\xi) = \frac{\log{\frac{1}{\xi}} - \log{2}}{2\log{\frac{1}{\xi}} - \log{2}}. Let qā‰„3q\geq 3 be an integer and ss be a nonnegative real number. We show that any invertible operator TT on a Banach space with spectrum contained in E1/qE_{1/q} that satisfies \begin{eqnarray*} & & \big\| T^{n} \big\| = O \big( n^{s} \big), \,n \rightarrow +\infty \\ & \textrm{and} & \big\| T^{-n} \big\| = O \big( e^{n^{\beta}} \big), \, n \rightarrow +\infty \textrm{ for some } \beta < b(1/q),\end{eqnarray*} also satisfies the stronger property āˆ„Tāˆ’nāˆ„=O(ns),ā€‰nā†’+āˆž.\big\| T^{-n} \big\| = O \big( n^{s} \big), \, n \rightarrow +\infty. We also show that this result is false for EĪ¾E_\xi when 1/Ī¾1/\xi is not a Pisot number and that the constant b(1/q)b(1/q) is sharp. As a consequence we prove that, if Ļ‰\omega is a submulticative weight such that Ļ‰(n)=(1+n)s,ā€‰(nā‰„0)\omega(n)=(1+n)^s, \, (n \geq 0) and Cāˆ’1(1+āˆ£nāˆ£)sā‰¤Ļ‰(āˆ’n)ā‰¤CenĪ²,ā€‰(nā‰„0)C^{-1} (1+|n|)^s \leq \omega(-n) \leq C e^{n^{\beta}},\, (n\geq 0), for some constants C>0C>0 and Ī²<b(1/q),\beta < b( 1/q), then E1/qE_{1/q} satisfies spectral synthesis in the Beurling algebra of all continuous functions ff on the unit circle T\mathbb{T} such that āˆ‘n=āˆ’āˆž+āˆžāˆ£f^(n)āˆ£Ļ‰(n)<+āˆž\sum_{n = -\infty}^{+\infty} | \widehat{f}(n) | \omega (n) < +\infty

    Similar works

    Full text

    thumbnail-image

    Available Versions