New physics, that is too heavy to be produced directly, can leave measurable
imprints on the tails of kinematic distributions at the LHC. We use energetic
QCD processes to perform novel measurements of the Standard Model (SM)
Effective Field Theory. We show that the dijet invariant mass spectrum, and the
inclusive jet transverse momentum spectrum, are sensitive to a dimension 6
operator that modifies the gluon propagator at high energies. The dominant
effect is constructive or destructive interference with SM jet production. We
compare differential next-to-leading order predictions from POWHEG to public 7
TeV jet data, including scale, PDF, and experimental uncertainties and their
respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with
current data. We project the reach of future 13 and 100 TeV measurements, which
we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an
application, we apply our bounds to constrain heavy vector octet colorons that
couple to the QCD current. We project that effective operators will surpass
bump hunts, in terms of coloron mass reach, even for sequential couplings.Comment: 40 pages, 13 figures, 8 tables. Minor changes. Accepted on JHE