Molecular variants of vitamin B12, siderophores and glycans occur. To take up
variant forms, bacteria may express an array of receptors. The gut microbe
Bacteroides thetaiotaomicron has three different receptors to take up variants
of vitamin B12 and 88 receptors to take up various glycans. The design of
receptor arrays reflects key processes that shape cellular evolution.
Competition may focus each species on a subset of the available nutrient
diversity. Some gut bacteria can take up only a narrow range of carbohydrates,
whereas species such as B.~thetaiotaomicron can digest many different complex
glycans. Comparison of different nutrients, habitats, and genomes provide
opportunity to test hypotheses about the breadth of receptor arrays. Another
important process concerns fluctuations in nutrient availability. Such
fluctuations enhance the value of cellular sensors, which gain information
about environmental availability and adjust receptor deployment. Bacteria often
adjust receptor expression in response to fluctuations of particular
carbohydrate food sources. Some species may adjust expression of uptake
receptors for specific siderophores. How do cells use sensor information to
control the response to fluctuations? That question about regulatory wiring
relates to problems that arise in control theory and artificial intelligence.
Control theory clarifies how to analyze environmental fluctuations in relation
to the design of sensors and response systems. Recent advances in deep learning
studies of artificial intelligence focus on the architecture of regulatory
wiring and the ways in which complex control networks represent and classify
environmental states. I emphasize the similar design problems that arise in
cellular evolution, control theory, and artificial intelligence. I connect
those broad concepts to testable hypotheses for bacterial uptake of B12,
siderophores and glycans.Comment: Added many new references, edited throughou