thesis

Joint Laver diamonds and grounded forcing axioms

Abstract

I explore two separate topics: the concept of jointness for set-theoretic guessing principles, and the notion of grounded forcing axioms. A family of guessing sequences is said to be joint if all of its members can guess any given family of targets independently and simultaneously. I primarily investigate jointness in the case of various kinds of Laver diamonds. In the case of measurable cardinals I show that, while the assertions that there are joint families of Laver diamonds of a given length get strictly stronger with increasing length, they are all equiconsistent. This is contrasted with the case of partially strong cardinals, where we can derive additional consistency strength, and ordinary diamond sequences, where large joint families exist whenever even one diamond sequence does. Grounded forcing axioms modify the usual forcing axioms by restricting the posets considered to a suitable ground model. I focus on the grounded Martin's axiom which states that Martin's axioms holds for posets coming from some ccc ground model. I examine the new axiom's effects on the cardinal characteristics of the continuum and show that it is quite a bit more robust under mild forcing than Martin's axiom itself.Comment: This is my PhD dissertatio

    Similar works

    Full text

    thumbnail-image