Support vector machines (SVMs) are an important tool in modern data analysis.
Traditionally, support vector machines have been fitted via quadratic
programming, either using purpose-built or off-the-shelf algorithms. We present
an alternative approach to SVM fitting via the majorization--minimization (MM)
paradigm. Algorithms that are derived via MM algorithm constructions can be
shown to monotonically decrease their objectives at each iteration, as well as
be globally convergent to stationary points. We demonstrate the construction of
iteratively-reweighted least-squares (IRLS) algorithms, via the MM paradigm,
for SVM risk minimization problems involving the hinge, least-square,
squared-hinge, and logistic losses, and 1-norm, 2-norm, and elastic net
penalizations. Successful implementations of our algorithms are presented via
some numerical examples