This paper studies long term investing by an investor that maximizes either
expected utility from terminal wealth or from consumption. We introduce the
concepts of a generalized stochastic discount factor (SDF) and of the minimum
price to attain target payouts. The paper finds that the dynamics of the SDF
needs to be captured and not the entire market dynamics, which simplifies
significantly practical implementations of optimal portfolio strategies. We pay
particular attention to the case where the SDF is equal to the inverse of the
growth-optimal portfolio in the given market. Then, optimal wealth evolution is
closely linked to the growth optimal portfolio. In particular, our concepts
allow us to reconcile utility optimization with the practitioner approach of
growth investing. We illustrate empirically that our new framework leads to
improved lifetime consumption-portfolio choice and asset allocation strategies