Recently, deep Convolutional Neural Networks (CNN) have demonstrated strong
performance on RGB salient object detection. Although, depth information can
help improve detection results, the exploration of CNNs for RGB-D salient
object detection remains limited. Here we propose a novel deep CNN architecture
for RGB-D salient object detection that exploits high-level, mid-level, and low
level features. Further, we present novel depth features that capture the ideas
of background enclosure and depth contrast that are suitable for a learned
approach. We show improved results compared to state-of-the-art RGB-D salient
object detection methods. We also show that the low-level and mid-level depth
features both contribute to improvements in the results. Especially, F-Score of
our method is 0.848 on RGBD1000 dataset, which is 10.7% better than the second
place