We first derive a general integral-turnpike property around a set for
infinite-dimensional non-autonomous optimal control problems with any possible
terminal state constraints, under some appropriate assumptions. Roughly
speaking, the integral-turnpike property means that the time average of the
distance from any optimal trajectory to the turnpike set con- verges to zero,
as the time horizon tends to infinity. Then, we establish the measure-turnpike
property for strictly dissipative optimal control systems, with state and
control constraints. The measure-turnpike property, which is slightly stronger
than the integral-turnpike property, means that any optimal (state and control)
solution remains essentially, along the time frame, close to an optimal
solution of an associated static optimal control problem, except along a subset
of times that is of small relative Lebesgue measure as the time horizon is
large. Next, we prove that strict strong duality, which is a classical notion
in optimization, implies strict dissipativity, and measure-turnpike. Finally,
we conclude the paper with several comments and open problems