research

Solution of the problem of definite outcomes of quantum measurements

Abstract

Theory and experiment both demonstrate that an entangled quantum state of two subsystems is neither a superposition of states of its subsystems nor a superposition of composite states but rather a coherent superposition of nonlocal correlations between incoherently mixed local states of the two subsystems. Thus, even if one subsystem happens to be macroscopic as in the entangled "Schrodinger's cat" state resulting from an ideal measurement, this state is not the paradoxical macroscopic superposition it is generally presumed to be. It is, instead, a "macroscopic correlation," a coherent quantum correlation in which one of the two correlated sub-systems happens to be macroscopic. This clarifies the physical meaning of entanglement: When a superposed quantum system A is unitarily entangled with a second quantum system B, the coherence of the original superposition of different states of A is transferred to different correlations between states of A and B, so the entangled state becomes a superposition of correlations rather than a superposition of states. This transfer preserves unitary evolution while permitting B to be macroscopic without entailing a macroscopic superposition. This resolves the "problem of outcomes" but is not a complete resolution of the measurement problem because the entangled state is still reversible.Comment: 21 pages, 3 figures, 1 tabl

    Similar works

    Full text

    thumbnail-image

    Available Versions