research

Polynomial Norms

Abstract

In this paper, we study polynomial norms, i.e. norms that are the dthd^{\text{th}} root of a degree-dd homogeneous polynomial ff. We first show that a necessary and sufficient condition for f1/df^{1/d} to be a norm is for ff to be strictly convex, or equivalently, convex and positive definite. Though not all norms come from dthd^{\text{th}} roots of polynomials, we prove that any norm can be approximated arbitrarily well by a polynomial norm. We then investigate the computational problem of testing whether a form gives a polynomial norm. We show that this problem is strongly NP-hard already when the degree of the form is 4, but can always be answered by testing feasibility of a semidefinite program (of possibly large size). We further study the problem of optimizing over the set of polynomial norms using semidefinite programming. To do this, we introduce the notion of r-sos-convexity and extend a result of Reznick on sum of squares representation of positive definite forms to positive definite biforms. We conclude with some applications of polynomial norms to statistics and dynamical systems

    Similar works