Over the last decade, memristive devices have been widely adopted in
computing for various conventional and unconventional applications. While the
integration density, memory property, and nonlinear characteristics have many
benefits, reducing the energy consumption is limited by the resistive nature of
the devices. Memcapacitors would address that limitation while still having all
the benefits of memristors. Recent work has shown that with adjusted parameters
during the fabrication process, a metal-oxide device can indeed exhibit a
memcapacitive behavior. We introduce novel memcapacitive logic gates and
memcapacitive crossbar classifiers as a proof of concept that such applications
can outperform memristor-based architectures. The results illustrate that,
compared to memristive logic gates, our memcapacitive gates consume about 7x
less power. The memcapacitive crossbar classifier achieves similar
classification performance but reduces the power consumption by a factor of
about 1,500x for the MNIST dataset and a factor of about 1,000x for the
CIFAR-10 dataset compared to a memristive crossbar. Our simulation results
demonstrate that memcapacitive devices have great potential for both Boolean
logic and analog low-power applications