research

Privacy-Aware Guessing Efficiency

Abstract

We investigate the problem of guessing a discrete random variable YY under a privacy constraint dictated by another correlated discrete random variable XX, where both guessing efficiency and privacy are assessed in terms of the probability of correct guessing. We define h(PXY,ϵ)h(P_{XY}, \epsilon) as the maximum probability of correctly guessing YY given an auxiliary random variable ZZ, where the maximization is taken over all PZYP_{Z|Y} ensuring that the probability of correctly guessing XX given ZZ does not exceed ϵ\epsilon. We show that the map ϵh(PXY,ϵ)\epsilon\mapsto h(P_{XY}, \epsilon) is strictly increasing, concave, and piecewise linear, which allows us to derive a closed form expression for h(PXY,ϵ)h(P_{XY}, \epsilon) when XX and YY are connected via a binary-input binary-output channel. For (Xn,Yn)(X^n, Y^n) being pairs of independent and identically distributed binary random vectors, we similarly define hn(PXnYn,ϵ)\underline{h}_n(P_{X^nY^n}, \epsilon) under the assumption that ZnZ^n is also a binary vector. Then we obtain a closed form expression for hn(PXnYn,ϵ)\underline{h}_n(P_{X^nY^n}, \epsilon) for sufficiently large, but nontrivial values of ϵ\epsilon.Comment: ISIT 201

    Similar works

    Full text

    thumbnail-image

    Available Versions