Filtering and smoothing with a generalised representation of uncertainty is
considered. Here, uncertainty is represented using a class of outer measures.
It is shown how this representation of uncertainty can be propagated using
outer-measure-type versions of Markov kernels and generalised Bayesian-like
update equations. This leads to a system of generalised smoothing and filtering
equations where integrals are replaced by supremums and probability density
functions are replaced by positive functions with supremum equal to one.
Interestingly, these equations retain most of the structure found in the
classical Bayesian filtering framework. It is additionally shown that the
Kalman filter recursion can be recovered from weaker assumptions on the
available information on the corresponding hidden Markov model