For any m,n∈N we first give new proofs for the following well
known combinatorial identities \begin{equation*}
S_n(m)=\sum\limits_{k=1}^n\binom{n}{k}\frac{(-1)^{k-1}}{k^m}=\sum\limits_{n\geq
r_1\geq r_2\geq...\geq r_m\geq 1}\frac{1}{r_1r_2\cdots r_m} \end{equation*} and
k=1∑n(−1)n−k(kn)kn=n!, and then we produce
the generating function and an integral representation for Sn(m). Using them
we evaluate many interesting finite and infinite harmonic sums in closed form.
For example, we show that ζ(3)=91n=1∑∞2nHn3+3HnHn(2)+2Hn(3), and ζ(5)=452n=1∑∞n2nHn4+6Hn2Hn(2)+8HnHn(3)+3(Hn(2))2+6Hn(4), where Hn(i) are generalized harmonic numbers defined below.Comment: to appear in Int. J. Number Theory, 201