research

On some combinatorial identities and harmonic sums

Abstract

For any m,nNm,n\in\mathbb{N} we first give new proofs for the following well known combinatorial identities \begin{equation*} S_n(m)=\sum\limits_{k=1}^n\binom{n}{k}\frac{(-1)^{k-1}}{k^m}=\sum\limits_{n\geq r_1\geq r_2\geq...\geq r_m\geq 1}\frac{1}{r_1r_2\cdots r_m} \end{equation*} and k=1n(1)nk(nk)kn=n!, \sum\limits_{k=1}^n(-1)^{n-k}\binom{n}{k}k^n = n!, and then we produce the generating function and an integral representation for Sn(m)S_n(m). Using them we evaluate many interesting finite and infinite harmonic sums in closed form. For example, we show that ζ(3)=19n=1Hn3+3HnHn(2)+2Hn(3)2n, \zeta(3)=\frac{1}{9}\sum\limits_{n=1}^\infty\frac{H_n^3+3H_nH_n^{(2)}+2H_n^{(3)}}{2^n}, and ζ(5)=245n=1Hn4+6Hn2Hn(2)+8HnHn(3)+3(Hn(2))2+6Hn(4)n2n, \zeta(5)=\frac{2}{45}\sum\limits_{n=1}^{\infty}\frac{H_n^4+6H_n^2H_n^{(2)}+8H_nH_n^{(3)}+3\left(H_n^{(2)}\right)^2+6H_n^{(4)}}{n2^n}, where Hn(i)H_n^{(i)} are generalized harmonic numbers defined below.Comment: to appear in Int. J. Number Theory, 201

    Similar works

    Full text

    thumbnail-image

    Available Versions