research

Multiplicity of solutions for fractional Schr\"odinger systems in RN\mathbb{R}^{N}

Abstract

In this paper we deal with the following nonlocal systems of fractional Schr\"odinger equations \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s} (-\Delta)^{s}u+V(x)u=Q_{u}(u, v)+\gamma H_{u}(u, v) &\mbox{ in } \mathbb{R}^{N}\\ \varepsilon^{2s} (-\Delta)^{s}v+W(x)v=Q_{v}(u, v)+\gamma H_{v}(u, v) &\mbox{ in } \mathbb{R}^{N} \\ u, v>0 &\mbox{ in } \mathbb{R}^{N}, \end{array} \right. \end{equation*} where ε>0\varepsilon>0, s(0,1)s\in (0, 1), N>2sN>2s, (Δ)s(-\Delta)^{s} is the fractional Laplacian, V:RNRV:\mathbb{R}^{N}\rightarrow \mathbb{R} and W:RNRW:\mathbb{R}^{N}\rightarrow \mathbb{R} are continuous potentials, QQ is a homogeneous C2C^{2}-function with subcritical growth, γ{0,1}\gamma\in \{0, 1\} and H(u,v)=2α+βuαvβH(u, v)=\frac{2}{\alpha+\beta}|u|^{\alpha} |v|^{\beta} with α,β1\alpha, \beta\geq 1 such that α+β=2s\alpha+\beta=2^{*}_{s}. We investigate the subcritical case (γ=0)(\gamma=0) and the critical case (γ=1)(\gamma=1), and using Ljusternik-Schnirelmann theory, we relate the number of solutions with the topology of the set where the potentials VV and WW attain their minimum values

    Similar works