The presence of certain clinical dermoscopic features within a skin lesion
may indicate melanoma, and automatically detecting these features may lead to
more quantitative and reproducible diagnoses. We reformulate the task of
classifying clinical dermoscopic features within superpixels as a segmentation
problem, and propose a fully convolutional neural network to detect clinical
dermoscopic features from dermoscopy skin lesion images. Our neural network
architecture uses interpolated feature maps from several intermediate network
layers, and addresses imbalanced labels by minimizing a negative multi-label
Dice-F1 score, where the score is computed across the mini-batch for each
label. Our approach ranked first place in the 2017 ISIC-ISBI Part 2:
Dermoscopic Feature Classification Task challenge over both the provided
validation and test datasets, achieving a 0.895% area under the receiver
operator characteristic curve score. We show how simple baseline models can
outrank state-of-the-art approaches when using the official metrics of the
challenge, and propose to use a fuzzy Jaccard Index that ignores the empty set
(i.e., masks devoid of positive pixels) when ranking models. Our results
suggest that (i) the classification of clinical dermoscopic features can be
effectively approached as a segmentation problem, and (ii) the current metrics
used to rank models may not well capture the efficacy of the model. We plan to
make our trained model and code publicly available.Comment: Accepted JBHI versio