research

O(N) and O(N) and O(N)

Abstract

Three related analyses of ϕ4\phi^4 theory with O(N)O(N) symmetry are presented. In the first, we review the O(N)O(N) model over the pp-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultrametric context. We demonstrate the existence of a Wilson-Fisher fixed point using an ϵ\epsilon expansion, and we show how to obtain leading order results for the anomalous dimensions of low dimension operators near the fixed point. Along the way, we note an important aspect of ultrametric field theories, which is a non-renormalization theorem for kinetic terms. In the second analysis, we employ large NN methods to establish formulas for anomalous dimensions which are valid equally for field theories over the pp-adic numbers and field theories on Rn\mathbb{R}^n. Results for anomalous dimensions agree between the first and second analyses when they can be meaningfully compared. In the third analysis, we consider higher derivative versions of the O(N)O(N) model on Rn\mathbb{R}^n, the simplest of which has been studied in connection with spatially modulated phases. Our general formula for anomalous dimensions can still be applied. Analogies with two-derivative theories hint at the existence of some interesting unconventional field theories in four real Euclidean dimensions.Comment: 44 pages, 8 figure

    Similar works

    Full text

    thumbnail-image