Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the
potential to be used in high-performance graphene-based semiconductor
electronics. However, controlled growth of GNRs on dielectric substrates
remains a challenge. Here, we report the successful growth of GNRs directly on
hexagonal boron nitride substrates with smooth edges and controllable widths
using chemical vapour deposition. The approach is based on a type of template
growth that allows for the in-plane epitaxy of mono-layered GNRs in
nano-trenches on hexagonal boron nitride with edges following a zigzag
direction. The embedded GNR channels show excellent electronic properties, even
at room temperature. Such in-plane hetero-integration of GNRs, which is
compatible with integrated circuit processing, creates a gapped channel with a
width of a few benzene rings, enabling the development of digital integrated
circuitry based on GNRs.Comment: 32 pages, 4 figures, Supplementary informatio