Graph Signal Processing (GSP) is a promising framework to analyze
multi-dimensional neuroimaging datasets, while taking into account both the
spatial and functional dependencies between brain signals. In the present work,
we apply dimensionality reduction techniques based on graph representations of
the brain to decode brain activity from real and simulated fMRI datasets. We
introduce seven graphs obtained from a) geometric structure and/or b)
functional connectivity between brain areas at rest, and compare them when
performing dimension reduction for classification. We show that mixed graphs
using both a) and b) offer the best performance. We also show that graph
sampling methods perform better than classical dimension reduction including
Principal Component Analysis (PCA) and Independent Component Analysis (ICA).Comment: 5 pages, GlobalSIP 201