We study several interesting examples of Biangular Tight Frames (BTFs) -
basis-like sets of unit vectors admitting exactly two distinct frame angles
(ie, pairwise absolute inner products) - and examine their relationships with
Equiangular Tight Frames (ETFs) - basis-like systems which admit exactly one
frame angle.
We demonstrate a smooth parametrization BTFs, where the corresponding frame
angles transform smoothly with the parameter, which "passes through" an ETF
answers two questions regarding the rigidity of BTFs. We also develop a general
framework of so-called harmonic BTFs and Steiner BTFs - which includes the
equiangular cases, surprisingly, the development of this framework leads to a
connection with the famous open problem(s) regarding the existence of Mersenne
and Fermat primes. Finally, we construct a (chordally) biangular tight set of
subspaces (ie, a tight fusion frame) which "Pl\"ucker embeds" into an ETF.Comment: 19 page