research

Controlling for Unobserved Confounds in Classification Using Correlational Constraints

Abstract

As statistical classifiers become integrated into real-world applications, it is important to consider not only their accuracy but also their robustness to changes in the data distribution. In this paper, we consider the case where there is an unobserved confounding variable zz that influences both the features x\mathbf{x} and the class variable yy. When the influence of zz changes from training to testing data, we find that the classifier accuracy can degrade rapidly. In our approach, we assume that we can predict the value of zz at training time with some error. The prediction for zz is then fed to Pearl's back-door adjustment to build our model. Because of the attenuation bias caused by measurement error in zz, standard approaches to controlling for zz are ineffective. In response, we propose a method to properly control for the influence of zz by first estimating its relationship with the class variable yy, then updating predictions for zz to match that estimated relationship. By adjusting the influence of zz, we show that we can build a model that exceeds competing baselines on accuracy as well as on robustness over a range of confounding relationships.Comment: 9 page

    Similar works