research

Origin of layer dependence in band structures of two-dimensional materials

Abstract

We study the origin of layer dependence in band structures of two-dimensional materials. We find that the layer dependence, at the density functional theory (DFT) level, is a result of quantum confinement and the non-linearity of the exchange-correlation functional. We use this to develop an efficient scheme for performing DFT and GW calculations of multilayer systems. We show that the DFT and quasiparticle band structures of a multilayer system can be derived from a single calculation on a monolayer of the material. We test this scheme on multilayers of MoS2_2, graphene and phosphorene. This new scheme yields results in excellent agreement with the standard methods at a fraction of the computation cost. This helps overcome the challenge of performing fully converged GW calculations on multilayers of 2D materials, particularly in the case of transition metal dichalcogenides which involve very stringent convergence parameters

    Similar works