It is well known, thanks to Lax-Wendroff theorem, that the local conservation
of a numerical scheme for a conservative hyperbolic system is a simple and
systematic way to guarantee that, if stable, a scheme will provide a sequence
of solutions that will converge to a weak solution of the continuous problem.
In [1], it is shown that a nonconservative scheme will not provide a good
solution. The question of using, nevertheless, a nonconservative formulation of
the system and getting the correct solution has been a long-standing debate. In
this paper, we show how get a relevant weak solution from a pressure-based
formulation of the Euler equations of fluid mechanics. This is useful when
dealing with nonlinear equations of state because it is easier to compute the
internal energy from the pressure than the opposite. This makes it possible to
get oscillation free solutions, contrarily to classical conservative methods.
An extension to multiphase flows is also discussed, as well as a
multidimensional extension